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Abstract—As malware, exploits, and cyber-attacks advance
over time, so does the mitigation techniques available to the user.
However, while attackers often abandon one form of exploitation
in favor of a more lucrative one, mitigation techniques are
rarely abandoned. Mitigations are rarely retired or disabled since
proving they have outlived their usefulness is often impossible.
As a result, performance overheads, maintenance costs, and false
positive rates induced by the different mitigations accumulate,
culminating in an outdated, inefficient, and costly security solu-
tion.

We advocate for a new kind of tunable framework on which
to base security mechanisms. This new framework enables a
more reactive approach to security allowing us to optimize the
deployment of security mechanisms based on the current state
of attacks. Based on actual evidence of exploitation collected
from the field, our framework can choose which mechanisms to
enable/disable so that we can minimize the overall costs and false
positive rates while maintaining a satisfactory level of security
in the system.

We use real-world Snort signatures to simulate the benefits of
reactively disabling signatures when no evidence of exploitation
is observed and compare them to the costs of the current state of
deployment. Additionally, we evaluate the responsiveness of our
framework and show that in case disabling a security mechanism
triggers a reappearance of an attack we can respond in time to
prevent mass exploitation.

Through a series of large-scale simulations that use integer
linear and Bayesian solvers, we discover that our responsive strat-
egy is both computationally affordable and results in significant
reductions in false positives, at the cost of introducing a moderate
number of false negatives. Through measurements performed in
the context of large-scale simulations we find that the time to
find the optimal sampling strategy is mere seconds for the non-
overlap case and under 2.5 minutes in 98% of overlap cases. The
reduction in the number of false positives is significant (about 9.2
million removed over traces that are about 9 years long). The
reduction is false positive rates in about 20%.

I. INTRODUCTION

Much of the focus in the security community in the last
several decades has been on discovering, preventing, and
patching vulnerabilities. While both new vulnerability classes
and new vulnerabilities are discovered seemingly every day,
the exploitation landscape often remains murky. For example,
despite buffer overruns, cross-site scripting (XSS), and SQL
injection attacks (SQLIA) being heralded as the vulnerabilities
of the decade [46], there is precious little published evidence
of how commonly exploited XSS or SQLIA might be in
practice; of course, there is a number of studies [31] on
how vulnerability trends change over time. One of the studies
we present in this paper suggests that, for example, XSS

exploitation is not nearly as common as would be suggested
by the daily stream of discovered vulnerabilities1.
Changing exploitation landscape: The security industry pro-
duces regular reports that generally presents a growing number
of vulnerabilities that are available, some in widely-deployed
software. As we argue in this paper, it is exceedingly tempting
to misinterpret this as a growth trend in the number of actual
exploits. However, the evidence for the latter is scant at best.
Due to a number of defense-in-depth style measures over the
last decade, including stack canaries, ALSR, XRF tokens,
automatic data sanitization against XSS and a number of
others, practical exploitation on a mass scale now requires
an increasingly sophisticated attacker. We see this in the
consolidation trends of the last five years. For example, indi-
vidual drive-by attacks have largely been replaced by exploit
kits [33], [16], [51]. In practice, mass-scale attacks generally
appear to be driven by a combination of two factors: 1)
ease of exploitation, and 2) whether attacks are consistently
monetizable. This is clearly different from targeted attacks
and APTs where the upside of a single successful exploitation
attempt may be quite significant to the attacker.

Given the growing scarcity in exploitable vulnerabilities,
there is some recent evidence that attackers attempt to take
advantage of publicly disclosed attacks right after their an-
nouncement, while the window of vulnerability is still open
and many end-users are still unpatched; Bilge et al. [12]
report an increase of 5 orders of magnitude in attack volume
following public disclosures of zero-day attacks. The situation
described above leads to a long tail of attacks — a period
of time when attacks are still possible but are increasingly
rare. It is tempting to keep the detection mechanism on during
the long tail. However, it is debatable whether that is a
good strategy, given the downsides. We argue that the usual
human behavior in light of the rapidly-changing landscape is
inherently reactive, however, often not reactive enough.

A. Mounting Costs of Security Mechanisms Over Time

One of the challenges of security mechanisms is that their
various costs can easily mount if unchecked over time.
• Technical debt. There is a problem of technical debt

associated with maintaining existing security mechanisms
as attack volume diminishes. This is considered to be

1Found at https://www.openbugbounty.org/ or xssed.org.
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a growing problem in the machine learning commu-
nity [50], but is not often cited as an issue in security
and privacy. For example, Kerschbaumer [32] reports
that only modernizing the CSP (content security policy)
implementation of the Firefox browser took over 125,000
lines of code over a period or 20 months by a dedicated
developer. Clearly, not every project has these kinds of
resources. When considered over a long period of time,
the technical debt accumulates to a point that the software
maker can no longer deal with the maintenance issues or
can only do so at the expense of introducing new defense
strategies.

• Performance overhead. Our studies of AV scanning
costs in Section II-C show that while the IO overhead
from opening files, etc. can be large, the cost of AV
scanning can increase quite significantly as more signa-
tures are added to the signature set. When many solutions
are applied within a piece of software, their overheads
can be additive, even relatively affordable mechanisms
such as stack canaries [15] and ALSR [41]. There is
a growing body of evidence that security mechanisms
that incur an overhead of 10% or more do not tend
to get widely deployed [55]. However, clearly several
low-overhead solutions one on top of another can easily
exceed the 10% mark.

• False positives. FPs have nontrivial security implica-
tions [47], [52]. According to a recent Damballa re-
port [43], “The average cost of time wasted responding to
inaccurate and erroneous intelligence can average $1.27
million annually.”

• Infrastructure. It is difficult to estimate the cost of back-
end maintenance and sending security updates. These
may include keeping up a VM-based platform for anyz-
ing malware, testing signatures, running a honeymonkey
backend for a web crawler, etc. [45], [44].

We argue that as a result of the factors above, over a long
period of time, we cannot afford a situation in which we only
add security mechanisms because of the issue of mounting
technical debt and maintenance costs. This is akin to perform-
ing a DOS attack against oneself; in the limit, the end-user
would not be able to do much useful work because of the
overhead and false positive burden of existing software.

Reluctance to disable: At the same time, actively removing
a security mechanism is tricky, if only from the standpoint
of the associated PR. In fact, we are not aware of a recent
major security mechanism that has been officially disabled,
although, of course, it is possible to deploy effectively a null
policy that will have the same effect. One of the obvious
downsides of tuning down any security mechanism is that the
recall decreases as well. This is used as a counter-argument
in terms of lowering any of the shields that might be in place.
However, it is important to realize that when tuning down a
specific mechanism is driven by representative measurements
of how commonly it is encountered in the wild, this is a good
strategy for mass attacks.

When it comes to targeted attacks, the challenge is that
they are likely to be able to overcome most existing defenses,
as we have seen from Pown2own competition, XSS filter
bypasses [58], [30], [9], etc. We hypothesize that sophisticated
targeted attacks are likely not to be particularly affected by
existing defenses. However, reducing the level of defense may
invite new waves of mass attacks, which would be mitigated
by upping the level of enforcement once again. It is of course
always possible to turn up the defenses on-demand. It is also
true that some attacks may go through a period of downtime,
to be followed by a revival (which can be triggered by the
removal of security mechanisms). As a result, entirely taking
out a security mechanism might be ill-advised.

B. Toward Tunable Security Mechanisms

In recent years we have seen growing evidence of the
fact that vulnerability statistics and exploit statistics are at
odds. In fact, Nayak et al. [39] report an increase in reported
vulnerabilities in the last several years, while the amount of
exploitation goes down. Furthermore, only a fraction of vul-
nerabilities (about 35%) actually gets exploited in a practical
sense. Furthermore, often the vulnerability severity rankings
are misleading, as they does not necessarily correlate with
the attractiveness or practicality of exploitation [5]. Barth et
al. [8] advocate a reactive approach to security where previous
attack patterns are used to decide how to spend the defender’s
finite budget. In this paper, we agree with the advantages
of reactive security. However, we look at widely deployed
security mechanisms, where the potential, for example, of
a single false positive is amplified by the potentially vast
installation base. A good example of such a system is an anti-
virus (AV) engine or an IDS. The reactive approach to security
is also supported by the number of zero-days that are observed
in the wild and reported by Bilge et al. [12].

We propose an alternative: we can have a tunable mech-
anism, a strategy that allows the defender to vary the level
of application based perhaps on an internal or external set
of conditions. For example, a centralized server can notify
the client that certain categories of attacks are no longer in
the wild, causing the client to reduce their sampling rates
when it comes to suspicious traffic. This is not unlike what is
already done in anti-virus engines — the set of active anti-virus
signatures is what defines what gets examined. Signatures are
retired when the threats they are designed to look for become
less prevalent. For this to work, there needs to be a greater
level of independence between the security mechanism and
the policy, the kind of separation that is already considered a
major design principle [4], [35].

In many ways, our proposal is aligned with practical security
enforcement practices of adjusting the sensitivity levels for
detectors depending on the FP-averseness of the environment
in which the detector is deployed. The Insight reputation-based
detector from Symantec allows the user to do just that [53].

Our goal here, of course, is to reduce all the factors listed
above, i.e. the false positive rate, the performance overhead,
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and the amount of possible back-end processing that is in-
volved.

C. Contributions

Our paper makes the following contributions:
• Tunable. We point out that today’s approach to proactive

security leads to inflexible and bloated solutions over
time. We instead advocate a notion of tunable security
design, which allows flexible and fine-grained policy
adjustments on top of existing security enforcement
mechanisms. This way, the protection level is tuned to
match the current threat landscape and not either the
worst-case scenario or what that landscape might have
been in the past.

• 0/1. For a collection of mechanisms that can be turned on
or off independently, we propose a strategy for choosing
which mechanisms to enable for the optimal combination
of true positives, false positives, and performance over-
heads.

• Sampling-based approach. We formalize the problem
of optimal adjustment for a mechanism that includes an
ensemble of classifiers, which, by adjusting the sampling
rates produces the optimal combination of true positives,
false positives, and performance overheads.

• Simulation. Using a simulation based on a history of
Snort signature updates over a period of about 9 years,
we show that we can adjust the sampling rates within a
window of minutes. This means that we can rapidly react
to a fast-changing exploit landscape.

D. Paper Organization

The rest of the paper is organized as follows. Section II
gives an overview of the exploitation landscape. Section III
defines an optimization problem that improves the true positive
rates and reduces the false positive rate and enforcement
costs, while favoring higher-severity warnings. Section IV
describes our experimental evaluation. Finally, Sections V
and VI describe related work and conclude.

II. BACKGROUND

When it comes to malware detection, anti-virus software
(or AV, for short), has long been the first line of defense.
However, for almost as long as AV engines have been around,
they have been recognized to be far from perfect, in terms
of their false negative rates, false positive rates, and, lastly,
in terms of performance [34], [17]. When it comes to false
negatives, the recall of AV engines is infamously low [22].
According to a whitepaper by Tenable [57], AV detection
rates range from about 5% to about 35%. Even ignoring the
possibility of zero-days [12], [11], AV vendors who manually
generate new signatures frequently have vulnerability windows
of 2–8 weeks, which indicates that given the speed with which
malware is manufactured or mutated by attackers, defenders
have a hard time keeping up, leading to false negatives.

Clearly, the choice of the signature database plays a decisive
role in the success of the the AV solution. To illustrate this

point, consider a company, SaneSecurity2, which promises
to deliver detection rates of up to 90% by using the free
open-source ClamAV detection engine and their own carefully
curated and frequently updated database of signatures. For
example, as of August 2016, they claim a detection rate
of 97.11% vs only 13.82% for out-of-the-box ClamAV, using
a database of little over 4,000 signatures vs. almost 250,000
for ClamAV.

Several researchers have proposed automatically generating
new signatures automatically [40], [42], [24], [49], [61].
Signature addition seems to largely remain a manual process,
supplemented with testing potential AV signatures against
known deployments, often within virtual machines.

We hypothesize that there is a reluctance to remove or
disable older signatures, leading to an unnecessary scanning
burden on the AV engine. While the issue of false negatives
is generally known to industry insiders, at the same time, the
issue of false positives receives much more negative press;
so, delayed signature removal runs the risk of unnecessarily
triggering false positives, which are supremely costly to the
AV vendor, as evidenced by studies by AV-Comparatives [47]3.

A. The Changing Attack Landscape

When the attacks for which some mitigation mechanism was
designed are no longer observed in the wild, it might seem
very alluring to remove said mechanism. However, in most
real world scenarios, we are not able to fully retire mitigation
techniques. Before disabling some mitigation mechanism, one
should examine the reason these attacks are no longer being
observed and also whether this is simply due to the observa-
tional mechanism and data collection approach being faulty.

Today, large-scale exploitation is often run as a business,
meaning it is driven largely, but not entirely, by economic
forces. The lack of observed attacks might simply be associ-
ated with an increase in difficulty in monetizing the attack.
Given that the attacker is aiming to profit from the attack, if
the cost of mounting a successful attack is too high compared
to either the possible gains or alternative attack vectors, the
attacker will most likely opt not to execute it as it is no longer
cost-effective. We see these forces in practice as the attack
landscape changes, with newer attacks such as ransomware
becoming increasingly popular in the last several years and
older attacks leading to the theft of account credentials becom-
ing less common because of two-factor authentication, geo-
locating the user, etc. To summarize, we identify two common
cases where monetizing becomes hard
• No longer profitable. The first is the result of causes

other than the mitigation mechanism. For example, when
clients are no longer interested in the possible product
of the attack or if there are other security mechanisms in
place that prohibit the usefulness of the attack’s outcome.
In such cases, removing the mitigation mechanism in
question will most likely not have a practical negative

2http://sanesecurity.com.
3http://www.av-comparatives.org
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(a) Additions of signatures in the Snort emerging threats database.

(b) Removals of signatures in the Snort emerging threats database.

(c) Updates of signatures in the Snort emerging threats database.

Fig. 1: Dynamics of Snort signatures between 12/30/2007 and 9/6/2016.

2023020 - ET TROJAN ProjectSauron Remsec DNS Lookup (rapidcomments.com) (trojan.rules)
2023021 - ET TROJAN ProjectSauron Remsec DNS Lookup (bikessport.com) (trojan.rules)
2023022 - ET TROJAN ProjectSauron Remsec DNS Lookup (myhomemusic.com) (trojan.rules)
2023023 - ET TROJAN ProjectSauron Remsec DNS Lookup (flowershop22.110mb.com) (trojan.rules)
2023024 - ET TROJAN ProjectSauron Remsec DNS Lookup(wildhorses.awardspace.info) (trojan.rules)
2023025 - ET TROJAN ProjectSauron Remsec DNS Lookup (asrgd-uz.weedns.com) (trojan.rules)
2023026 - ET TROJAN ProjectSauron Remsec DNS Lookup (sx4-ws42.yi.org)(trojan.rules)
2023027 - ET TROJAN ProjectSauron Remsec DNS Lookup (we.q.tcow.eu)(trojan.rules)

(a) ProjectSauron malware (http : //http : //bit.ly/2eX1O9h).
2003182 || ET TROJAN Prg Trojan v0.1-v0.3 Data Upload || url,www.securescience.net/FILES/securescience/10378/pubMalwareCaseStudy.pdf
2003183 || ET TROJAN Prg Trojan Server Reply || url,www.securescience.net/FILES/securescience/10378/pubMalwareCaseStudy.pdf
2003184 || ET TROJAN Prg Trojan v0.1 Binary In Transit || url,www.securescience.net/FILES/securescience/10378/pubMalwareCaseStudy.pdf
2003185 || ET TROJAN Prg Trojan v0.2 Binary In Transit || url,www.securescience.net/FILES/securescience/10378/pubMalwareCaseStudy.pdf
2003186 || ET TROJAN Prg Trojan v0.3 Binary In Transit || url,www.securescience.net/FILES/securescience/10378/pubMalwareCaseStudy.pdf
2007688 || ET TROJAN Prg Trojan HTTP POST v1 || url,www.securescience.net/FILES/securescience/10378/pubMalwareCaseStudy.pdf
2007724 || ET TROJAN Prg Trojan HTTP POST version 2 || url,www.securescience.net/FILES/securescience/10378/pubMalwareCaseStudy.pdf

(b) Zeus (Prg) malware (http : //bit.ly/2bIS3hk).

Fig. 2: Connecting signatures to known malware

effect on the system since the attack remains not cost-
effective.

• Effective mitigation. The other case is when the attack
is not cost-effective due to difficulties imposed by the
mitigation mechanism. In such cases, removing the mech-
anism will result in an increase in the cost-effectiveness
of the attacks it was aimed to prevent. This might result
in the reemergence of such attacks.

By sampling the relative frequency of attacks of a particular
kind, we cannot always determine which case we are currently
faced with. It may be a combination of these two factors as

well.

We therefore suggest an alternative that acts as a mid-
dle ground by introducing sampling rates for all mitigation
mechanisms. In the first case, the mitigation mechanism is no
longer needed, therefore adding a sampling rate will reduce
the security of the system, but will provide fewer benefits than
a complete removal. On the other hand, in the second case, the
security of the system is somewhat lowered, but the statistical
nature of the sampling rate maintains some deterrence against
attackers.

4

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t  
C

S-
20

16
-0

4 
- 

20
16



Fig. 3: How many days after (or before) the CVE announcement
we observe an EMERGING THREATS signature being added. Positive
numbers mean that there is a delay, whereas negative numbers
indicate a signature added before the CVE.

B. Snort Signatures from EMERGING THREATS

To test some of these educated guesses, we have per-
formed an in-depth study of Snort signatures. Focusing on
the dynamics of signature addition and removal more specif-
ically, we have mined the database of Snort signatures, start-
ing on 12/30/2007 and ending on 9/6/2016. Daily updates
to the Snort signature database are distributed through the
EMERGING THREATS mailing list archived at https://lists.
emergingthreats.net, which we used to determine which
signatures, if any were 1) added, 2) removed, or 3) modified
every single day. The results of exploring the dataset we
obtained by crawling the mailing list archive are presented
in figure 1.

Below we give several representative examples of signature
addition, update, and removal.

Example 1 Signature addition. Figure 2a shows the addition
of new signatures in response to observations of the malware
known as ProjectSauron [23] in the wild. The connection
between EMERGING THREATS signatures and the malware
they are designed to protect against is evident from the
signature description.

Similarly, Figure 2b shows the connection between EMERG-
ING THREATS signatures and variants for the banking Trojan
called Zeus [10] (also known as Prg). �

Example 2 Signature update. Figure 4 shows an example
of a typical mailing list exchange leading up to a signature
change. However, the promised update does not get added to
the signature database until a later date, 02/04/2011. It is not
entirely clear why.

Similarly, in the case of signature 2011124, we see a false
positive report about traffic on port 110 on 04/04/2016, which
receives a response from the maintainers within two days:
we get quite a lot of false positives with this one due to
the POP3 protocol on port 110, it would be great if port 110
or more generally POP3 traffic could be excluded from this rule
-- JohnNaggets - 2016-04-02
Thanks, we’ll get this out today!
-- DarienH - 2016-04-04

The maintainers added port 110, resulting in this signature
revision 19:
alert ftp $HOME_NET ![21,25,110,119,139,445,465,475,587,902,1433,2525] ->

any any (msg:"ET MALWARE Suspicious FTP 220 Banner on Local Port (spaced)";

> We have 2010148 already:
> content:"Content-Disposition|3A| attachment|3b|"; nocase;
> content:"filename"; within:100; content:"DHL_"; nocase;
> within:50;
> pcre:"/filename\s*=\s*\"DHL_(Label_|document_|
> package_label_|print_label_).{5,7}\.zip/mi";
>
> I’ll modify to fit the new style. The old is gone!
>
> Thanks Jason!
>
> Matt
>
> On Nov 3, 2010, at 10:35 AM, Weir, Jason wrote:
>
> > Seeing these as inbound smtp attachments
> >
> > DHL_label_id.Nr21964.zip
> > DHL_label_id.Nr48305.zip
> > DHL_label_id.Nr3139.zip
> > DHL_label_id.Nr15544.zip
> > DHL_label_id.Nr7085.zip
> >
> > How about this for current events
> >
> > alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"ET
> > CURRENT_EVENTS DHL Spam Inbound"; flow:established,to_server;
> > content:"Content-Disposition|3a| attachment|3b|"; nocase;
> > content:"filename=|22|DHL_label_id."; nocase;
> > pcre:"/filename=\x22DHL_label_id\.Nr[0-9]{4,5}\.ZIP\x22/i";
> > classtype:trojan-activity; sid:xxxxxxx; rev:0;)

Fig. 4: Updating a signature based on customer feedback.

flow:from_server,established,only_stream; content:"220 ";
depth:4; content:!"SMTP"; within:20;
reference:url,doc.emergingthreats.net/2011124;
classtype:non-standard-protocol; sid:2011124; rev:19;)

the same day they responded. �

CVE Additions: Evaluation of the Delay: Another question
to consider is how fast signatures for known threats are added
after the threats are discovered or publicly announced. To esti-
mate that, we have correlated 176 CVEs to 40,884EMERGING
THREATS signatures. This process usually involves analyzing
the comments embedded in the signature to find CVE ref-
erences (for example, reference:cve,2003-0533). We
have plotted a histogram that shows the delay in days between
the CVE (according to the NIST NVD database) and the
signature introduction date. The results are shown in the form
of a histogram in Figure 3. As we can see, many signatures
are created and added the same day the CVE is disclosed.
Sadly, in quite a significant percentage of cases, signatures
are added two weeks and more after the CVE release date.
What is perhaps most surprising is that many signatures are
created quite a bit before the disclosure, in many cases the
day before, and in some cases over a month prior to it. This
must be due to other information sources that lead to signature
generation.

C. AV Scanning Costs

To demonstrate our claims of the inefficiency and mounting
costs of maintaining a large amount of outdated security
mechanism, we turn to ClamAV [1]. We installed the latest
version of the ClamAV engine (0.99.2) and used it to scan a
single file of 248 MB. To understand how the running time
is affected by the size of the signature set, we ran the scan
several times using different sized subsets of the ClamAV
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Fig. 5: Scanning time for a single 248 MB file using ClamAV
version 0.99.2 as a function of the signature dataset size. The dashed
line is a linear fit to the measurements.

signature dataset. Figure 5 shows the obtained scan times, in
seconds. The figure clearly demonstrates a linear correlation
between the signature dataset size and the scan time, which is
represented by the dashed trend line.

This data clearly demonstrates the hidden cost over time
of adding signatures and rarely removing them. This factor
together with false positives argues for removing signatures
more aggressively.

III. OPTIMALLY SETTING SAMPLING RATES

In this section we set the stage for a general apporach to
selecting sampling rates in response to changes to the data.
We evaluate these ideas with practical multi-year traces in
Section IV. We start with a model in which we have a set of
classifiers at our disposal and we need to assign a sampling rate
to each of them, so as to match our optimization goals. These
goals include higher true positive rates, lower false positive
rates, and lower overheads. We formalize this as problem of
selecting a bit-vector α, which indicates the sampling rate for
each classifier.

A. Active Classifier Set: a Formalization

Our assumption is that our classifiers send some portion of
the samples they flagged as malicious for further analysis. This
matches how security products, such as those from Symantec,
use user machines for in-field monitoring of emerging threats.
In the context of a large-scale deployment, this will result in a
large, frequently updated dataset, which consists solely of true
positive and false positive samples. We can use this dataset to
evaluate the average true positive, false positive, true negative,
and false negative rates, induced by each sampling rate for our

classifiers. Specifically, our aim is to choose a sampling bit-
vector ᾱ that will keep the true positive and true negatives
above some threshold, while keeping the false positive rate,
false negatives, and performance costs below some maximum
acceptable values. We found this formulation to be most useful
in our evaluation.
Constraints: Formally, these goals can be specified as a set
of inequalities, one for each threshold:

TP (ᾱ) ≥ Xp (1a)

TN(ᾱ) ≥ Xn (1b)

FP (ᾱ) ≤ Yp (1c)

FN(ᾱ) ≤ Yn (1d)

Cost(ᾱ) ≤ Z (1e)

Parametrization: Given a dataset D and a set of classifiers
C we define the following parametrization:
• Di is the ith entry in the dataset and Cj is the jth

classifier;
• G ∈ (0/1)|D|, such that Gi is 1 iff Di is a malicious

entry in the ground-truth;
• R ∈ (0/1)|D|×|C|, such that Ri,j is 1 if Di is classified

as malicious by Cj or 0 otherwise;
• P ∈ R|C|, such that Pj is the average cost of classifying

an entry from the dataset using Cj ;
• α ∈ [0, 1]|C|, such that αj is the sampling rate for

classifier cj .
For each set sampling rate α we can compute the average cost
of executing the entire set of classifiers on an entry from the
dataset as:

Cost(α) = PT · ᾱ (2)

Optimization: To evaluate the true positive and false positive
rates induced by a sampling rate α, we first need to evaluate
the probability that an entry will be classified as malicious.
Given a constant R, this probability can be expressed as:

Pri(α) = 1−Π
|C|
j=0(1−Ri,j · αj) (3)

Based on this probability, we can express the true/false-
positive rates as:

TP (ᾱ) =
Σ
|D|
i=0(Gi · Pri(α))

Σ
|D|
i=1(Gi)

(4a)

FP (ᾱ) =
Σ
|D|
i=0((1−Gi) · Pri(α))

Σ
|D|
i=1(Gi)

(4b)

TN(ᾱ) =
Σ
|D|
i=0((1−Gi) · (1− Pri(α)))

Σ
|D|
i=1(1−Gi)

(4c)

FN(ᾱ) =
Σ
|D|
i=0((Gi · (1− Pri(α)))

Σ
|D|
i=1(1−Gi)

(4d)

In practice, not all suggested goals are always necessary and
not all goals are always meaningful. Finding the optimal
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sampling rate usually depends on the setting for which it is
needed. Next we discuss a few hypothetical scenarios and
which approaches might best suit them.

Prioritized objectives: When the user can state that one objec-
tive is more important than others, a multi-leveled optimization
goal can be used. In such a solution, the objective with the
highest priority is optimized first. In case there is more than a
single possible solution, the second objective is used to choose
between them, and so on.

We note that in our scenario it is extremely unlikely that one
can reduce the sampling rate of a classifier without affecting
the true-positive and false-positive rates. As a result, using
strict objectives, such as maximize true-positives, would result
in a single solution, often enabling all classifiers completely
(or disabling all, depending the chosen objective). Therefore
it is recommended to phrase the objectives as “maintain X%
of true-positives”, so that some flexibility remains.

Budget-aware objectives: Often when assessing the effect
a security mechanism has on a company’s budget, a cost
is assigned to each false positive and each false negative
produced by the mechanism. These assessments can be used
to minimize the total budgetary effect of the mechanism and
expected expenses. Assuming CostFN and CostFP are the
costs of false negatives and false positives respectively, we
can express the expected expenses as:

Expenses(α) = CostFN · FN(α) + CostFP · FP (α) (5)

Using this formulation we can:

• Define a budget, Expenses(α) ≤ BUDGET , as a strict
requirement from any sampling rate.

• Define our problem as a standard optimization problem
with the objective minimizeExpenses(α).

Balancing true positives and false positives: In this scenario,
the sampling rate optimization problem can be translated to a
standard classifier optimization setting. Under this translation,
our true-positive rate is equivalent to the classifier’s precision
while the false-positive rate becomes the recall.

In such a case a ROC curve induced by different sampling
rates can be used to select the best rate. Taking some inspi-
ration from the well-known F1-score, a similar score, F1sr,
expressed in formula 6 can be used to transform our problem
to a single-objective optimization problem.

F1sr = 2 · TP · FP
TP + FP

(6)

For efficiency, we split the process of classifier sampling rate
optimization into two steps. Real-world data often contains
classifier overlap, that is, samples that are flagged by more than
one classifier. We split our dataset into batches based on the
classifier overlap, so that the samples in each batch are flagged
by the same set of classifiers. Each batch is associated with
true positive and false positive counts. The first step consists
of choosing the batches that are cost-effective.

B. 0/1 Sampling Using Linear Optimizations

Based on the desired optimization objective and the esti-
mated cost ratio between false negatives and false positives
(if applicable), we proceed to define the problem of finding
the optimal subset of sample batches as a linear programming
problem. At this stage, since each batch is determined by a
specific classifier overlap, there is no overlap between the
batches. Therefore, the computation of the true/false posi-
tives/negatives becomes a simple summation of the associated
true/false positive counts. For example, the total true positive
count is the sum of true positives associated with batches that
are determined as enabled (meaning they should be sampled)
and the total false negative count is the sum of the true positive
counts of disabled batches.

To encode this problem, we assign each batch bi with a
boolean variable vi, representing whether or not the batch
should be active. We then encode the optimization goal using
these variables and the associated counts. We use a linear
programming solver called Pulp [3], which finds an assignment
to v̄ = {v1, v2, ...} that optimizes the optimization objective.
The output of this step is a division of the samples into
enabled, meaning the classifier should sample them, and
disabled samples.

When the dataset contains no classifier overlap, meaning
each sample is sampled by exactly one classifier, the output of
the first step can be used as the classifier sampling rates. In this
setting, the batches essentially correspond to single classifiers
and therefore disabled batches correspond to classifiers that
are deemed not cost-effective according to the optimization
objective. The optimal solution in this case would be to fully
enable all cost-effective classifiers and fully disable the rest.

C. Inferring Sampling Rates using Factor Graphs

In the second step of our solution, given a set of enabled
samples and a set of disable samples as described in Sec-
tion III-B, we infer sampling rates for all classifiers that will
induce the desired separation.

The key insight we use to infer the classifier sampling rates
is to express our problem in the form of factor graphs [36].
Factor graphs are probabilistic graphical models composed of
two kinds of nodes: variables and factors. A variable can be
either an evidence/observation variable, meaning it’s value is
set, or a query variable, whose value needs to be inferred. A
factor is a special node that define the relationships between
variables. For example, given variable A and B, a possible
factor connecting them could be A→ B.

Example 3 Consider the example factor graph in Figure 6.
The graph consists of 8 variables: 3 named C1–C3 repre-
senting 3 different classifiers and 5 variables named S1-S5

representing samples. These variable are connected using 5
factors, F1–F5, such that Fi(C̄, Si) = ∨C̄ → Si, where C̄ is
the set of classifiers with edges entering the factor.

The variables Si are treated as observations, meaning their
value is set, and the variables Ci are treated as query variables.
The inference algorithm has to choose at which probability is
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S1 S2 S3 S4 S5

F1 F2 F3 F4 F5

C1 C2 C3

Fig. 6: Example factor graph, containing three classifiers C1 . . . C3

and five samples S1 . . . S5. The structure of the factor graph deter-
mines the overlap among the classifiers.

each Ci set to true, such that the factors satisfy the observa-
tions. If we set all observations Si to true, the inference of
the factor graph returns the trivial solution of always setting
all Ci to true (meaning Ci is true with probability 1.0).

When we set some Si to false, the inference algorithm is
able to provide more elaborate answers. For example, setting
S4 to false, results in probability 1.0 for C1 and probability 0.5
to both C2 and C3. �

Given the sets of enabled and disabled samples from the
previous step, we translate the problem to a factor graph as
follows:

1) For each classifier i we define a query variable Ci;
2) for each sample j we define an observation variable Sj

and a factor Fj ;
3) if sample j was set to be enable we set Sj to true,

otherwise to false;
4) we connect each Sj to its corresponding Fj ;
5) for every pair of classifier and sample (i, j), if classifier

i flags sample j we connect Ci to Fj .
Using this construction, we get a factor graph similar in
structure to the graph in figure 6. The inferred probabilities
for the query variables Ci are used as the sampling rates for
the corresponding classifiers.

To solve the factor graph and infer the probabili-
ties for Ci, we use Microsoft’s Infer.NET [2], with
ExpectationPropagation chosen as the inference algo-
rithm, which worked fastest in our experiments. It took us
some effort to find a specific problem formulation that works
well with the Infer.NET solver. We evaluate the performance
of the solver in Section IV.

D. Discussion

Maintaining the dataset: We intend to build our dataset using
samples flagged as malicious by our classifiers. This kind of
dataset will naturally grow over time to become very large.
Two problems rise from this situation.

The first problem is that after a while most of the dataset
will become outdated. While we usually wouldn’t want to
completely drop old samples, since they still represent possible
attacks, we would like to give precedence to newer samples
over older ones (which essentially should result in higher
sampling rates for current attacks). To facilitate this we can
assign a weight to each sample in the dataset. We represent

these weights using W ∈ [0, 1]|D| and rewrite the formulas
from 4 as:

TP (α) =
Σ
|D|
i=0(Wi ·Gi · Pri(α))

Σ
|D|
i=1(Wi ·Gi)

(7a)

FP (α) =
Σ
|D|
i=0(Wi · (1−Gi) · Pri(α))

Σ
|D|
i=1(Wi ·Gi)

(7b)

TN(α) =
Σ
|D|
i=0(Wi · (1−Gi) · (1− Pri(α)))

Σ
|D|
i=1(Wi · (1−Gi))

(7c)

FN(α) =
Σ
|D|
i=0(Wi ·Gi · (1− Pri(α)))

Σ
|D|
i=1(Wi · (1−Gi))

(7d)

While many different weighting techniques can be used, two
examples are:
• Assign weight 0 to all old samples, essentially dropping

old samples from the dataset.
• Assign some initial weight w0 to each new sample and

exponentially decrease the weights of all samples after
each sampling rate selection.

The second problem stems from the sampling rates themselves.
Given 2 classifiers, C1 and C2, and their corresponding
sampling rates, α1 and α2, if α1 is higher than α2 the dataset
will contain more samples of attacks blocked by C1 than by
C2. This creates a biased dataset that, in turn, will influence
sampling rates selected in the future. This problem can also
be addressed using the weights mechanism. One possible
approach will be to assign initial weights in reverse ratio
to the sampling rates (so that samples matching C2 will be
assigned a higher rate than samples matching C1). Other viable
approaches exist and the most suitable approach should be
chosen based on the setting in which the classifiers are used.
Minimum sampling rates: In Section III-A we’ve defined a
sampling rate as α ∈ [0, 1]|C|. This definition allows for a
complete disable of a classifier by setting it’s sampling rate
to 0. In practice, since we can never be sure that an attack has
completely disappeared from the landscape, it is unlikely that
we will want to completely disable a classifier.

A possible approach to address this is by setting a minimal
sampling rate for the classifier. Given that the attack for
which this classifier was intended is extremely unlikely to be
encountered we don’t want to apply the classifier to every
sample encountered. however since the attack is still possible
we should statistically apply the classifier to some samples to
maintain some chance of blocking and noticing an attack (if
one appears). Given an inferred sampling rate S, the minimal
sampling rate can be introduced in many forms, such as
• a lower bound L on the sampling rate assigned to each

classifier (S >= L);
• a constant value X added to the sampling rate (S +X);
• some percentage Y reduced from the non-sampled por-

tion (S + (1− S) · Y ).
We note that the minimum sampling rate for each classifier
should be proportional to the severity of the attacks for
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which it was intended. If the impact of a successful attack
is minuscule, we may set a lower minimum sampling rate
because even if we miss the attack the consequences are not
severe. However, if the impact is drastic, meaning the severity
of the attack is high, then we should set a higher minimum
sampling rate as a precaution.

We can formalize the notion of minimal sampling rates as
MinSR ∈ [0, 1]|C|, which is based on some severity mapping
S ∈ N|C| (such that Sj is the severity of the attacks for which
classifier Cj was intended), and use MinSRj as either L,X ,
or Y from the examples above.

IV. EXPERIMENTAL EVALUATION

In this section we first describe our simulation design and
then discuss both how much our approach helps in terms
of achieving optimization objectives such as reducing false
positives, and how long it takes to solve the optimization
problems on a daily or weekly basis.

A. Simulation Design

To evaluate the benefits of our approach we performed
several simulations simulating real world conditions. We de-
sign our simulation with a goal of mimicking real-world anti-
virus activity. For the purposes of our simulation, we collected
detailed information about Snort signature activity summaries
from 12/30/2007 until 9/6/2016, entailing signature additions,
updates and removals, as shown in Figure 1. In total, we’ve
collected information regarding 40,884 signatures, each of
which we use as a classifier in our simulation.

Generating simulated malware traffic: We generate malware
traffic traces (observed true positive and false positive samples)
based on the collected Snort signature information. We assume
that
• each signature was introduced to counteract some specific

malware;
• for each malware, some other active signatures might un-

intentionally flag that malware even though those signa-
tures were not aimed for that specific malware (resulting
in classifier overlap), and

• signature updates are aimed to address some false nega-
tives, resulting in increased true positive and false positive
observations.

To simulate the decline of a specific type of malware over
time, we use a power law decay curve, which we calibrate to fit
the lifespan of the collected signatures. We filter out signatures
which were added or removed outside of our sampling period,
for which we can’t determine a life span, and eliminate short-
lived signatures (less than 7 days), leaving 3,029 signatures,
which we use in the simulation. Figure 7 shows the number
of active signatures for each day of our simulation.

We note that in many real-world cases, a signature is
introduced only a few days after a malware appears in the wild
and is removed at least a few days after the relevant malware
disappeared from the attack landscape. We incorporate this
insight into the attack model.

We also note that because legitimate traffic does not change,
the amount of false positive observations should remain con-
stant as long as the signature is not changed. We therefore only
update the false positive traces when we encounter a signature
update, in which case we set the number of observations as
some percentage, denoted θ, of the true positive observations.
We leave θ as a parameter for the simulation. The curve in
Figure 8 show an example of the number of true positive and
false positive observation for Snort signature 2007705.

Modeling classifier overlap: From the collected signature
information, we learn that, while there exists some overlap
between signatures, most signatures only flag one kind of
malware. To simulate overlap in our generated traces, we
randomly choose for each signature with how many other
signatures it overlaps. We draw this value from the distribution
shown in Figure 9.

Simulation scenario: We aim to simulate a real world usage
in our simulation. The scenario we are simulating is when
once every 3 days our tool is applied to the latest observations
and updates the sampling rates for all active signatures. New
signatures might still be introduced between sampling rate
updates and are set to full sampling until the next update.
We believe this to be a reasonable setting that is quite likely
to be implemented in practice.

Additionally, under some conditions, Infer.NET’s inference
algorithm might fail. Such conditions are very rare (inference
for only 1.5% of days either failed or timed-out). However, if
they occur we allow the simulation to keep using the sampling
rates computed on the last update. We believe this to be a
reasonable solution that is most likely to be used in practice
in case of inference failure.

We defined our optimization goal using a budget-aware
objective. We assume a known estimated ratio, denoted as β,
between the cost of a false negative and that of a false positive,
and phrase the objective as FP + β · FN . We leave β as a
parameter for the simulation. We initialized each malware with
an initial true positive count of approximately 500 observations
per day.

B. Experimental Setup

To compare different simulation conditions, we ran several
simulations, each with a different combination of values for
θ and β, both with classifier overlap and without. The sim-
ulations were executed on a Linux machine with 64 AMD
Opteron(TM) 6376 processors, each operating at 2.3GHz,
and 128 GB RAM, running Ubuntu 14.04. Each simulation
was assigned the exclusive use of a single core.

C. Precision and Recall Results

By applying the sampling rates computed by our system,
one can eliminate part of the false positives previously ob-
served at the expense of losing part of the true positive
observations. In Figure 10, we shows the percentage of true
positives remaining compared to the percentage of false posi-
tives eliminated.
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Fig. 7: Number of active signatures in the Snort archive (12/30/2007–9/6/2016). Figure 1 shows some of the update dynamics.

Fig. 8: Modeling the true positive count and the false positive
count per day for EMERGING THREATS signature 2007705, assuming
power law decay. The dashed lines at the ends of the figure indicate
malware appearance, signature introduction, malware disappearance,
and signature removal. The dashed lines in the middle of the figure
indicate signature updates.

The dashed line across each of the figures symbolizes an
equal loss of both false positives and true positives. The area
above the dashed line matches settings in which less true

Fig. 9: Probability distribution used to decide amount of overlap for
each signature.

positives are lost compared to false positives. This is the area
we should strive to be in, since it represents a sampling which
is relatively cost-effective. One can clearly see from the figures
that, regardless of classifier overlap, all of our simulations
reside above the dashed line.

Figures 11 and 12 show the classification precision and
recall respectively as a function of θ for different value of
β, both with and without classifier overlap. The figures show
that, regardless of the overlap, both precision and recall drop
when β and θ rise. A rise of θ means there are more false
positive observations, which reduces the portion of observed
true positives, thus affecting the overall precision and recall.
Similarly, a rise of β means that relative cost of a false negative
is higher than that of a false positive. Therefore, based on the
optimization objective we set in Section IV-A, it is only logical
that the system will choose to allow for more false positives,
rather than risking a false negative, thus again affecting both
precision and recall.

Adapting to the situation: From the aforementioned figures,
we learn that the effectiveness of applying sampling rates
depends greatly on the operating scenario. In some cases,
where for example false negatives are extremely expensive
(as might be the case for corporate datacenters), the sampling
rates remain rather high and thus the overall true positive and
false positive counts remain mostly unaltered. On the other
hand, when false negatives are relatively cheap (as is often
the case for private, user owned desktops), we can expect our
system to determine sampling rates that are relatively low.

D. Solution Times

We recognize that for a system such as the one proposed in
this paper to be applicable to real world scenarios, it is required
that solving and computing the sampling rates be very fast and
cheap. Long solving times mean that the system would not be
able to quickly adapt to changing landscapes and to respond
by setting new sampling rates in a timely fashion.

Figure 13 shows a cumulative distribution of the total
solving times (both PuLP and Infer.NET) measured during
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(a) without classifier overlap (b) with classifier overlap

Fig. 10: Percentage of true positives remaining compared to percentage of false positives eliminated. Different setting for FP-threshold and
cost ratio correspond to different points on the curves.

(a) without classifier overlap (b) with classifier overlap

Fig. 11: Classification precision as a function of θ for different values of β.

our simulations for each day. The figure shows that over 80%
of simulated days were solved in under 20 seconds. The day
which took our system the longest to solve took less than 5
minutes (285 seconds to be exact). This tells us that using this
kind of system in a responsive manner is indeed feasible.

Figure 14 shows the average solving time needed for each
day of our simulation. We first note that the solving times
for PuLP (represented by the blue line) are extremely low,
constantly below 1 second. When there is no classifier overlap,
the solution provided by PuLP is sufficient as the sampling
rates for the classifiers. This means that when there is no

overlap, solving is extremely fast. Also, as can be seen from
the figure, there is a clear correlation between Infer.NET
solving time and the number of active signatures, which both
follow the same trends. This correlation is interesting as it
indicates that

• we can anticipate the solving time in advance, and
• we can accelerate the solving of days with a large

number of active signatures using a “divide-and-conquer”
approach, meaning we can split them to smaller batches
and solve each one separately.
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(a) without classifier overlap (b) with classifier overlap

Fig. 12: Classification recall as a function of θ for different values of β.

Fig. 13: Cumulative distribution of overall solution times (PuLP +
Infer.NET).

E. Experimental Summary

Reduction in false positives: Regardless of classifier overlap,
when comparing the reduction in the number of false pos-
itives to that of true positives, we find that our responsive
optimization technique removes more false positives, both in
terms of percentages (19.23% compared to 12.39% without
overlap; 20.13% compared to 11.96% with overlap) with
overlap) and in terms of absolute values (9,286,530 com-
pared to 8,002,871.5 without overlap; 9,225,422.6 compared
to 8,065,888.6 with overlap). The reduction in absolute values
is surprisingly significant, considering that the highest value
of θ in our simulations was 25, meaning the false positive rate
was initialized to 25% of the true positive rate. In settings with
classifier overlap, applying sampling rates is more beneficial
than in settings without classifier overlap. This can be observed
from the relevant reduction rates, 20.13% compared to 19.23%
of false positives and 11.96% compared to 12.39% of true
positives. This means that, on average, we can eliminate more
false positives at the expense of fewer true positives.

Solver running time: In settings without classifier overlap, the

Fig. 14: Average daily solving times. The blue line (at the bottom)
represents PuLP solving time (≤ 1 second). The black line represent
Infer.NET solving time. The grey line in the background show
number of active signatures per day.

sampling rates for all simulated days were computed in mere
seconds. In settings with overlap, timing measurements indi-
cate that the proposed approach for setting sampling rates is
computationally feasible and applicable to real-world settings.
The measurements show that sampling rates for over 98% of
simulated days were computed in under 2.5 minutes per day,
with both daily average and median of 15 seconds.

V. RELATED WORK

The closest work to ours focuses on reactive vs. proactive
security in Section V-A, with subsequent sections discussing
work on exploitation in the wild (Section V-B), models of
malware propagation (Section V-C), and economics of security
(Section V-D).
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A. Reactive vs. Proactive Security

There has been some interest in comparing the relative
performance of proactive and reactive security over the years.
In the work closest to ours, Barth et al. [8] make the interesting
observation that proactive security is not always more cost-
effective than reactive security. Just like in our paper, they
support their claim using simulations. Not sure if they take
into account the long term effects of a short term investment
in security (for example, implementing and integrating a new
security mechanism is likely to be beneficial long after the
investment in the mechanism has been reduced).

Barreto et al. study controllability and stability properties of
dynamical systems when actuator or sensor signals are under
attack [7]. They formulate a detailed adversary model that
considers different levels of privilege for the attacker such as
read and write access to information flows. They then study the
impact of these attacks and propose reactive countermeasures
based on game theory. In one case-study they use a basic
differential game, and in the other case study they introduce
a heuristic game for stability.

B. Exploitation In the Wild

Nayak et al. [39] highlights the lack of a clear connection
between vulnerabilities and metrics such as the attack surface
on the amount of exploitation that takes place. They focus on
using field data to get a more comprehensive picture of the
exploitation landscape as it is changing. They find that none
of the products in their study have more than 35% of their
disclosed vulnerabilities exploited in the wild. Furthermore,
the exploitation ratio and the exercised attack surface tend to
decrease with newer product releases. They also find that hosts
that quickly upgrade to newer product versions tend to have
reduced exercised attack-surfaces. These findings resonate
with the premise of our paper.

Sabottke et al. focus on determining which vulnerabilities
are likely to be exploited after a disclosure [48]. They conduct
a quantitative and qualitative exploration of the vulnerability-
related information disseminated on Twitter. They then de-
scribe the design of a Twitter-based exploit detector, and
they introduce a threat model specific to our problem. In
addition to response prioritization, their detection techniques
have applications in risk modeling for cyber-insurance and
they highlight the value of information provided by the victims
of attacks.

Bilge et al. [12] focus on the prevalence and exploitation
patterns of zero-days. They rely on identifying zero-day at-
tacks from field-gathered data that records when benign and
malicious binaries are downloaded on 11 million real hosts
around the world. Searching this dataset for malicious files that
exploit known vulnerabilities indicates which files appeared
on the Internet before the corresponding vulnerabilities were
disclosed. They identify 18 vulnerabilities exploited before
disclosure, of which 11 were not previously known to have
been employed in zero-day attacks. They also discover that a
typical zero-day attack lasts 312 days on average and that, after
vulnerabilities are disclosed publicly, the volume of attacks

exploiting them increases by up to 5 orders of magnitude.
Some of these findings were important in deciding on how to
conduct credible simulations for our experimental evaluation
in this paper.

Commercial Intelligence Reports: One of the better ways
to understand the exploitation landscape is by consulting the
intelligence reports that emerge from large security software
vendors. Of these, reports published by Microsoft [37] and
Symantec [54] stand out. Both are published on a regular basis,
annually in the case of Microsoft and monthly in the case of
Symantec.

A recent report from Microsoft presented at BlackHat
highlights the importance of focusing on exploitation and
not only vulnerabilities [59], [60]. The current approach to
software security at Microsoft is driven by data. This approach
involves proactive monitoring and analysis of exploits found
in-the-wild to better understand the types of vulnerabilities
that are being exploited and exploitation techniques being
used. This category of analysis and insight has driven a
series of mitigation improvements that has broken widely used
exploitation techniques and in some cases virtually eliminated
entire classes of vulnerabilities.

C. Models of Malware Propagation

Gao et al. attempt to model the propagation of mobile
viruses [20]. They propose a two-layer network model for
simulating virus propagation through both Bluetooth and SMS.
Their work addresses the impacts of human behaviors, i.e.,
operational behavior and mobile behavior, on virus propaga-
tion. They provide some experimental results that show that
their proposed strategies can effectively protect large-scale and
highly dynamic mobile networks.

Bose et al. study four aspects crucial to modeling malware
propagation: application-level interactions among users of
such networks, local network structure, user mobility, and
network coordination of malware such as botnets [13]. Since
closed-form solutions of malware propagation considering
these aspects are difficult to obtain, they describe an open-
source, flexible agent-based emulation framework that can be
used by malware researchers for studying today’s complex
malware. The framework, called Agent-Based Malware Mod-
eling (AMM), allows different applications, network structure,
network coordination, and user mobility in either a geographic
or a logical domain to study various infection and propagation
scenarios. In addition to traditional worms and viruses, the
framework also allows modeling network coordination of
malware such as botnets. The majority of the parameters
used in the framework can be derived from real-life network
traces collected from a network, and therefore, represent
realistic malware propagation and infection scenarios. As rep-
resentative examples, they examine two well-known malware
spreading mechanisms: (i) A malicious virus, such as Cabir,
spreading among the subscribers of a cellular network using
Bluetooth, and (ii) A hybrid worm that exploit email and file-
sharing to infect users of a social network. In both cases, they
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identify the parameters most important to the spread of the
epidemic based upon their extensive simulation results.

Fleizach et al. evaluate the effects of malware propagating
using communication services in mobile phone networks [19].
Although self-propagating malware is well understood in the
Internet, mobile phone networks have very different charac-
teristics in terms of topologies, services, provisioning and
capacity, devices, and communication patterns. The authors
have developed an event-driven simulator that captures the
characteristics and constraints of mobile phone networks. In
particular, the simulator models realistic topologies and provi-
sioned capacities of the network infrastructure, as well as the
contact graphs determined by cell phone address books. Their
evaluation focuses on the speed and severity of random contact
worms in mobile phone networks, characterizing denial-of-
service effects such worms could have on the network.

Garetto et al. present analytical techniques that can be
used to better understand the behavior of malware, such as
e-mail viruses and worms [21]. They develop a modeling
methodology based on Interactive Markov Chains that is able
to capture many aspects of the problem, especially the impact
of the underlying topology on the spreading characteristics of
malware. They propose numerical methods to obtain useful
bounds and approximations in the case of very large sys-
tems, validating their results through simulation. An analytic
methodology represents a fundamentally important step in the
development of effective countermeasures for future malware
activity.

Edwards et al. present a simple Markov model of malware
spread through large populations of websites and studies the
effect of two interventions that might be deployed by a search
provider: blacklisting infected web pages by removing them
from search results entirely and a generalization of blacklist-
ing, called depreferencing, in which a website’s ranking is
decreased by a fixed percentage each time period the site
remains infected [18]. They analyze and study the trade-
offs between infection exposure and traffic loss due to false
positives (the cost to a website that is incorrectly blacklisted)
for different interventions. They find that interventions are
most effective when websites are slow to remove infections.
Surprisingly, they also find that low infection or recovery
rates can increase traffic loss due to false positives. Their
analysis also shows that heavy-tailed distributions of website
popularity, as documented in many studies, leads to high
sample variance of all measured outcomes. This result implies
that it will be difficult to determine empirically whether
certain website interventions are effective, and it suggests that
theoretical models such as the one described in this paper have
an important role to play in improving web security.

Grottke et al. define metrics and models for the assessment
of coordinated massive malware campaigns targeting critical
infrastructure sectors [25]. First, they develop an analytical
model that allows us to capture the effect of neighborhood on
different metrics (infection probability and contagion proba-
bility). Then, they assess the impact of putting operational but
possibly infected nodes into quarantine. Finally, they study

the implications of scanning nodes for early detection of
malware (e.g., worms), accounting for false positives and
false negatives. Evaluating this methodology using a small
four-node topology, they find that malware infections can be
effectively contained by using quarantine and appropriate rates
of scanning for soft impacts.

Moore et al. study the abuse of “trending” search terms,
in which miscreants place links to malware-distributing or
ad-filled web sites in web search and Twitter results, by
collecting and analyzing measurements over nine months from
multiple sources [38]. They devise heuristics to identify ad-
filled sites, report on the prevalence of malware and ad-
filled sites in trending-term search results, and measure the
success in blocking such content. They uncover collusion
across offending domains using network analysis, and use
regression analysis to conclude that both malware and ad-
filled sites thrive on less popular, and less profitable trending
terms. They also build an economic model informed by our
measurements and conclude that ad-filled sites and malware
distribution may be economic substitutes.

Cova et al. offer the first broad analysis of the infrastructure
underpinning the distribution of rogue security software by
tracking 6,500 malicious domains [14]. Secondly, they show
how to apply attack attribution methodologies to correlate
campaigns likely to be associated to the same individuals or
groups. By using these techniques, they identify 127 rogue
security software campaigns comprising 4,549 domains. Fi-
nally, they contextualize their findings by comparing them to
a different threat ecosystem, that of browser exploits. They
underline the profound difference in the structure of the two
threats, and investigate the root causes of this difference
by analyzing the economic balance of the rogue antivirus
ecosystem. They track 372,096 victims over a period of 2
months and take advantage of this information to retrieve
monetization insights. While applied to a specific threat type,
the authors hypothesize that the methodology and the lessons
learned from this work are of general applicability to develop
a better understanding of the threat economies.

Hang et al. conduct an extensive study of malware dis-
tribution and follow a website-centric and user-centric point
of view [26]. They collect data from four online databases,
including Symantec’s WINE Project, for more than 600K
malicious URLs and over 500K users. They find that legitimate
but compromised websites constitute 33.1% of the malicious
websites in the dataset. In order to conduct this study, they
develop a classifier to distinguish between compromised vs.
malicious websites with an accuracy of 95.3%, which could
be of interest to studies on website profiling. They find that
malicious URLs can be surprisingly long-lived, with 10% of
malicious sites staying active for over three months. Finally,
the distribution of the visits to malicious sites per user is
skewed, with 1.4% of users visiting more than 10 malicious
sites in 8 months. Their study is a step toward modeling web-
based malware propagation as a network-wide phenomenon
and enabling researchers to develop realistic models.

Kwon et al. analyzed approximately 43,000 malware down-
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load URLs [56]. Their measurement period is over 1.5 years
in which they studied the URLs’ long-term behavior. They
discovered that some malware download sites survive for a
very long time and revives many times, a fact that had not
been revealed by previous research. They established three
categories by focusing attention on malware variation. Their
results showed that 10% of the unchanged category survives
for more than 500 days and 10% of the changed occasionally
category revives more than 15 times. They also analyzed
sites in terms of change in IP address, number of anti-virus
signatures, and URL features. They find that each category
has different attacker operational and resource characteristics.
Using these findings, they discuss how to mitigate the effects
of each category

Arbaugh et al. [6] Introduced a vulnerability life-cycle
model supported by case studies. The introduced model is
different than the intuitive model one would imagine a vul-
nerability follows. We relied on the insights presented in this
paper in designing our models for trace generation.

D. Economics of Security Attacks and Defenses

A report by the Ponemon Institute [43] estimated the costs
of false positives to industry companies. The estimation was
based on a survey filled by 18,750 people in various positions.
While the numbers portrayed in the report are not accurate,
they do paint an interesting picture. The average cost to false
positives to a company was estimated at 1.27 million dollars
per year. These estimations include the cost analyzing and
investigating false positive reports as well the cost of not
responding in time to other true positive reports.

Herley et al. [28] point out that, while it can be claimed that
some security mechanism improves security, it is impossible to
prove that a mechanism is necessary or sufficient for security,
meaning there is no other way to prevent an attack or that
no other mechanism is needed. They also make a similar
observation stating that one can never prove that a security
mechanism is redundant and not needed. These observations
put into words the frame of mind that resulted in the current
overwhelming number of active security mechanisms. We try
to address this problem using the proposed sampling rates.

Online social networks (OSNs) offer a rich medium of
malware propagation [29]. The authors monitor 3.5 million
Facebook accounts and explore the role of pure monetary,
social, and combined socio-monetary psychological incentives
in OSN malware campaigns. The majority of the malware
campaigns rely on pure social incentives. They also observe
that malware campaigns using socio-monetary incentives in-
fect more accounts and last longer than campaigns with pure
monetary or social incentives. The latter suggests the efficiency
of an epidemic tactic is surprisingly similar to the mechanism
used by biological pathogens to cope with diverse gene pools.

Hardy et al. shed light on targeted malware attacks faced
by organizations by studying malicious e-mails received by 10
civil society organizations (the majority of which are from
groups related to China and Tibet issues) over a period of 4
years [27]. They find that the technical sophistication of

malware they observe is fairly low, with more effort placed
on socially engineering the e-mail content. They develop the
Targeted Threat Index (TTI), a metric which incorporates both
social engineering and technical sophistication when assess-
ing the risk of malware threats. They demonstrate that this
metric is more effective than simple technical sophistication
for identifying malware threats with the highest potential to
successfully compromise victims.

VI. CONCLUSIONS

In this paper we argued for a new kind of tunable framework
on which to base security mechanisms. This new framework
enables a more reactive approach to security allowing us to
optimize the deployment of security mechanisms based on
the current state of attacks. Based on actual evidence of ex-
ploitation collected from the field, our framework can choose
which mechanisms to enable/disable so that we can minimize
the overall costs and false-positive rates while maintaining a
satisfactory level of security in the system.

Our responsive strategy is both computationally affordable
and results in significant reductions in false positives, at the
cost of introducing a moderate number of false negatives.
Through measurements performed in the context of large-scale
simulations we find that the time to find the optimal sampling
strategy is mere seconds for the non-overlap case and under 2.5
minutes in 98% of overlap cases. The reduction in the number
of false positives is significant (about 9.2 million removed
over traces that are about 9 years long). The reduction in false
positive rates is 20.13% and 19.23% with and without overlap,
respectively.
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